

Direção Acadêmica - DA/ Coordenação de Ensino - CE Curso: Técnico Integrado ao Ensino Médio Turma: 3º ano Componente Curricular: Matemática Prof. Ediênio Farias

LISTA DE EXERCÍCIOS LE^{005 - Semestre Letivo II}

Geometria Analítica: ponto, reta, circunferência e secções cônicas

01^{aluno} – René Descartes (1596-1650) e Pierre de Fermat (1601-1665) foram os matemáticos que contribuíram com a descoberta da Geometria Analítica. A partir destes estudiosos, escreva sobre a importância da Geometria Analítica para o desenvolvimento e sistematização dos conteúdos matemáticos.

02^{prof} – Com auxílio da *Planilha Calc* ou *calculadora científica*, no Laboratório de Informática, demonstre que o triângulo com vértices A(-2,4), B(-5, 1) e C (-6, 5) é isósceles. Registre as distâncias d(A,B), d(A,C) e d(B,C) encontradas. (*Lembre-se de considerar até a terceira casa decimal*).

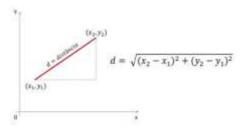
03^{aluno} - Com auxílio da *Planilha Calc* ou *calculadora científica*, no Laboratório de Informática, demonstre que o triângulo com vértices A(0,5), B(3, -2) e C (-3, -2) é isósceles. Registre, na folha-resposta, as distâncias d(A,B), d(A,C) e d(B,C) encontradas e determine o seu perímetro. (Lembre-se de considerar até a terceira casa decimal).

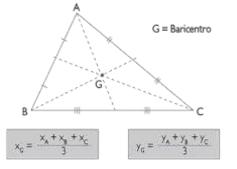
04^{prof} – Dados os vértices A (0, -3), B (-7, -1) e C (- 2, 2) de um triângulo ABC, determine as coordenadas do seu baricentro (Utilize a *Planilha Calc* ou a *calculadora científica*).

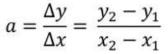
05^{aluno} - Dados os vértices A (6, ½), B (8, -5/2) e C (1, - 4) de um triângulo ABC, determine as coordenadas do seu baricentro (Utilize a *Planilha Calc* ou a *calculadora científica*. Registre os cálculos na folha-resposta).

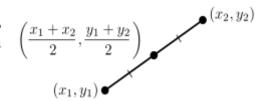
06^{prof} – Determine o coeficiente angular e a coordenada do ponto médio da reta que passa pelos pontos: A(0, 2) e B(3, 6).

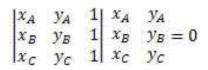
07^{aluno} - Determine o coeficiente angular da reta e a coordenada do ponto médio que passa pelos pontos: A(-7, -5) e B(2, 1). (Utilize a *Planilha Calc* ou a *calculadora científica*. Registre os cálculos na folha-resposta).

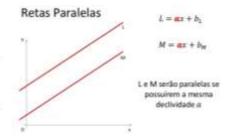

 08^{prof} – Verifique se os pontos A(-3, 5), B(1, 1) e C(3, -1) estão alinhados.


09^{aluno} - Verifique se os pontos A(0, 2), B(-3, 1) e C(4, 5) estão alinhados. Mostre a resposta por meio da *Regra de Sarrus* e pela forma geométrica (construção de eixo cartesiano). (Utilize a *Planilha Calc* ou a *calculadora científica*. Registre os cálculos na folha-resposta).

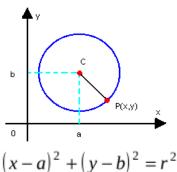

Retas Perpendiculares


 $10^{\text{ prof}}$ – Qual a posição da reta r de equação 15x + 10y - 3 = 0, em relação à reta s de equação 9x + 6y - 1 = 0. Prove sua resposta pelo *software Grafeq*.


Fórmula da Distância



Direção Acadêmica - DA/ Coordenação de Ensino - CE Curso: Técnico Integrado ao Ensino Médio Turma: 3° ano Componente Curricular: Matemática Prof. Ediênio Farias


11 $^{\text{aluno}}$ – Qual a posição da reta r de equação – x + 3y = 2, em relação à reta s de equação -2x + 6y = -10. Prove sua resposta pelo software Grafeg, esbocando o gráfico na folha-resposta.

 12^{aluno} – Qual a posição da reta r de equação 3x - 2y = 0, em relação à reta s de equação y = 1.5x + 13. Prove sua resposta pelo software Grafeq, esboçando o gráfico na folha-resposta.

$$13^{\text{prof}}$$
 – Represente geometricamente a solução do sistema de inequação:
$$\begin{cases} x + 3y < -2 \\ 2x + y > -6 \end{cases}$$

14^{aluno} - Represente geometricamente a solução do sistema de inequação:
$$\begin{cases} 4x + y > 3 \\ 5x - 2y < 7 \end{cases}$$
 (Utilize o *Grafeq*)

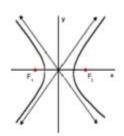
 15^{aluno} – A equação geral da circunferência é dada por $(x-a)^2 + (y-b)^2 = r^2$. Conforme informações abaixo, insira no Grafeq a relação correspondente e registra o que ocorre.

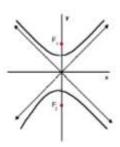
- b) quando a e b maiores que 0 e r igual a 5.
- c) quando a e b menores que 0 e r igual a 5.
- d) quando a maior que 0, b menor que 0 e r igual a 5.
- e) quando a menor que 0, b maior que 0 e r igual a 5.

 16^{aluno} – A equação geral da parábola, com vértice na origem, é dada por $x^2 = 4cy$ ou $y^2 = 4cx$. Conforme informações abaixo, insira no Grafeg a relação correspondente e registra o que ocorre.

- a) quando c > 0 na equação $x^2 = 4cy$
- b) quando c < 0 na equação $x^2 = 4cy$
- c) quando c > 0 na equação $y^2 = 4cx$
- d) quando c < 0 na equação $y^2 = 4cx$

 $17^{\text{aluno}} - \text{A}$ equação geral da elipse é dada por $\frac{(x-x')^2}{a^2} + \frac{(y-x'')^2}{b^2} = 1$ ou $\frac{(x-x')^2}{b^2} + \frac{(y-x'')^2}{a^2} = 1$. Conforme informações abaixo, insira no Grafeg a relação correspondente e registra o que ocorre.


- a) quando a e b iguais entre si e diferentes de zero; x' e x" maiores que 0 nas duas equações.
- b) quando a e b iguais entre si e diferentes de zero; x' e x" menores que 0 nas duas equações.


 $18^{\text{aluno}} - \text{A}$ equação geral da elipse é dada por $\frac{(x-x')^2}{a^2} - \frac{(y-x'')^2}{b^2} = 1$ ou $\frac{(x-x')^2}{b^2} - \frac{(y-x'')^2}{a^2} = 1$. Conforme

informações abaixo, insira no Grafeq a relação correspondente e registra o que ocorre.

- a) quando a e b iguais entre si e diferentes de zero; x' e x" maiores que 0 nas duas equações.
- b) quando a e b iguais entre si e diferentes de zero; x' e x" menores que 0 nas duas equações.

19^{aluno} - As figuras, ao lado, representam as hipérboles equiláteras. Conforme diálogo em sala de aula, escreva (com suas palavras) o significado desse tipo de hipérbole.

